投稿指南
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。

这道小学生都能看懂的题目,竟然没人会做!

来源:试题与研究 【在线投稿】 栏目:综合新闻 时间:2020-11-04 03:43
作者:网站采编
关键词:
摘要:科学无国界 我们是知识的搬运工 认真阅读下面的文章,并思考文末互动提出的问题,严格按照互动:你的答案格式在评论区留言,就有机会获得由江苏凤凰科学技术出版社提供的优质

科学无国界

我们是知识的搬运工

认真阅读下面的文章,并思考文末互动提出的问题,严格按照互动:你的答案格式在评论区留言,就有机会获得由江苏凤凰科学技术出版社提供的优质科普书籍《李永乐老师给孩子讲物理》一套。

这是一个非常诡异的数学猜想,因为它的表述异常简单并且非常容易理解,而且问题的形式看起来那么富有吸引力。

但是即使是最顶尖的数学家,也没能给出一个证明!!

不要试图自己解决这个问题!

虽然我已经发出了警告,但你一定还是会被这个问题所蛊惑,因为它的表述是那么简单,那么容易理解,而且问题的形式看起来那么富有吸引力。

任意选择一个整数,如果它是偶数,就将它除以二;如果它是奇数,就把它乘以三再加一。对于新产生的数,我们对它进行上一步的操作,依次类推。

如果你这样一直做下去,你一定会陷入一个循环中。至少我们猜想会是这样。

接下来以10为例来说明这个问题:

10是偶数,所以我们将它除以2然后得到5;又因为5是奇数,所以用3乘以5再加1得到16;16是偶数,16除以2得8,接下来可以得到4,然后是2,再接下来是1。因为1是奇数,3乘以1加1是4,最后进入了4-2-1-4-2-1......的循环中。

如果以11为例,我们可以得到以下过程:11-34-17-52-26-13-40-20-10-5-16-8-4-2-1-4-2-1....最终我们还是掉入了相同的循环中。

这个“臭名昭著”的考拉兹猜想讲的是,如果从一个正整数开始,你最终一定会陷入循环中。也许你会不顾我的警告而尝试去解决它:因为它看起来很简单也很容易理解。事实上,多数数学家都曾在这个问题上花过功夫。

我第一次在学校学习到这个猜想时就被它吸引了。我和我的朋友花了很长时间来思考这个问题,但是这并没有让我们得到答案。

考拉兹猜想之所以臭名昭著的原因是:即使你可以证明你见过的所有数字都满足这个猜想,那你也不能证明它一定是对的。所以,它至今只是个猜想。

看似简单 ·实则极难

为了理解考拉兹猜想,我们从下面这个函数开始:

你也许还记得学校里教的“分段函数”:上面的函数里包含一个作为自变量的正整数n,并且有两种对它进行操作的规则,我们需要根据n的奇偶性来选择两个规则中的一个。

函数f代表我们对n进行操作的规则,例如:f(10)=10/2=5,f(5)=3*5+1=16。根据函数f对输入的奇数的操作,考拉兹猜想也被成为3n+1猜想。

考拉兹猜想处理的是函数f的“轨迹”问题。轨迹指的是如果你从一个正整数开始计算函数值,并将上算出的值重新代入到函数中得到新的函数值。我们称这种操作为函数的“迭代”。我们已经计算过了输入为10时函数f的轨迹:

f?(10) = 10/2 = 5

f?(5) = 3 × 5 + 1 = 16

f?(16) = 16/2 = 8

f?(8) = 8/2 = 4

更方便的表达函数轨迹的方法如下:

10 5 16 8 4 2 1 4 2 1 …

在轨迹的尾部我们可以看到1 4 2 1 的循环。

类似地,对于11有:

11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 4 ?….

我们同样陷入了相同的循环中。在尝试其他的例子后,我们会发现轨道最终总是会陷入到循环4 2 1 …中去。

考拉兹猜想声称,任意正整数的轨迹最终都会经过1。尽管没有人能证明这个猜想,但是已经有人证明了,任何小于2^68的正整数都符合考拉兹猜想。所以,如果你想找一个反例的话,你要到大于的整数里去找。

很容易证明某个数是否符合考拉兹猜想:只要计算相应的轨迹直到得到数字1。但是如果想要知道这个猜想为什么这么难证明,让我们先研究一个稍微简单一点的函数,g(n)。

函数g和f类似,但是对于奇数,函数g只是让数字加1。由于函数f和g不同,数字在函数g中的轨迹和在f中的不同。例如,g中10和11的轨迹分别是:

10 5 6 3 4 2 1 2 1 2 …

11 12 6 3 4 2 1 2 1 2 …

可以看到,g中11的轨迹更快到达1。同样的,27的轨迹在g中也更快的到达1.

27 28 14 7 8 4 2 1 2 ?…

在这些例子中,g中的轨迹也会陷入循环中,但是它比f中的循环更加简单:

2 1 2 1 ?….

我们可以猜想,g中的轨迹最终也会到达1。我可以把它称作“诺拉兹”猜想,但是我还是想叫它n+1猜想。我们会通过检验更多的数的轨迹来研究它,即便是证明了很多数都满足这个猜想,我们也不能认定所有的数都满足这个猜想。幸运的是,诺拉兹猜想可以被证明,方法如下:

文章来源:《试题与研究》 网址: http://www.styyjzz.cn/zonghexinwen/2020/1104/852.html



上一篇:2013年物业管理师考试《综合能力》真题与答案
下一篇:讲解员能力测评现场考试题目-展馆讲解员试题

试题与研究投稿 | 试题与研究编辑部| 试题与研究版面费 | 试题与研究论文发表 | 试题与研究最新目录
Copyright © 20019-2020 试题与研究 版权所有
投稿电话: 投稿邮箱: